

MATHEMATICS STANDARD LEVEL PAPER 2

Friday 8 May 2009 (morning)

1	hour	30	min	ιιtΔc
- 1	nour	วบ	111111	utes

C	andi	date	sessi	on n	umb	er	
0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

-2-

Blank page

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

The following diagram is a box and whisker plot for a set of data.

The interquartile range is 20 and the range is 40.

(a)	Write down the median value.	[1 mark]
(b)	Find the value of	
	(i) <i>a</i> ;	
	(ii) <i>b</i> .	[4 marks]

2. [Maximum mark: 6]

Consider the graph of f shown below.

(a) On the **same** grid sketch the graph of y = f(-x).

[2 marks]

(This question continues on the following page)

(Question 2 continued)

The following four diagrams show **images** of f under different transformations.

(b) Complete the following table.

[2 marks]

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	
Maps f to $f(x)+1$	

(c)	Give a full geometric description of the transformation that gives the image in Diagram A.	[2 marks]

	3.	[Maximum	mark.	: 5]
--	----	----------	-------	------

Solve the equation	$e^x = 4\sin x$, for $0 \le$	$x \le 2\pi$.	

4. [Maximum mark: 8]

The diagram below shows a triangle ABD with AB = 13 cm and AD = 6.5 cm. Let C be a point on the line BD such that BC = AC = 7 cm.

(a)	Find the size of angle ACB.	[3 marks]
(b)	Find the size of angle CAD.	[5 marks]

5. [Maximum mark: /	5.	[Maximum	mark:	7]
----------------------------	-----------	----------	-------	----

(a)	Expa	and $\sum_{r=4}^{7} 2^r$ as the sum of four terms.	[1 mark]
(b)	(i)	Find the value of $\sum_{r=4}^{30} 2^r$.	
	(ii)	Explain why $\sum_{r=4}^{\infty} 2^r$ cannot be evaluated.	[6 marks]

ó.	[Maximum mark: 7]	
	Consider the curve $y = \ln(3x - 1)$. Let P be the point on the curve where $x = 2$.	
	(a) Write down the gradient of the curve at P.	[2 marks]
	(b) The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.	[5 marks]

7. [Maximum mark:	7	/
-------------------	---	---

The quadratic equation $kx^2 + (k-3)x + 1 = 0$ has two equal real roots.

Find the possible values of k. (a)

[5 marks]

Write down the values of k for which $x^2 + (k-3)x + k = 0$ has two equal real roots.

[2 marks]

																				 •		 •
																				 ٠	 •	 •
																			•	 •		
																			٠	 ٠	 ٠	 •
																				 ٠	 •	 •
 																			٠	 ٠	 •	 •
 																			٠	 ٠	 ٠	 ٠
																				 ٠	 •	 •
 	 	 	 	٠.	•	 	•	 •		•	 •	 	 	 •	 		 		 ٠	 ٠	 ٠	 ٠
 	 		 		•	 ٠.	•	 •	 	•	 •	 -	 	 •	 	•	 	•	 •	 -	 •	 •

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

Let $f(x) = x(x-5)^2$, for $0 \le x \le 6$. The following diagram shows the graph of f.

Let R be the region enclosed by the x-axis and the curve of f.

(a) Find the area of R.

[3 marks]

(b) Find the volume of the solid formed when R is rotated through 360° about the x-axis.

[4 marks]

(c) The diagram below shows a part of the graph of a quadratic function g(x) = x(a-x). The graph of g crosses the x-axis when x = a.

The area of the shaded region is equal to the area of R. Find the value of a.

[7 marks]

Do **NOT** write on this page.

9. [Maximum mark: 13]

A van can take either Route A or Route B for a particular journey.

If Route A is taken, the journey time may be assumed to be normally distributed with mean 46 minutes and a standard deviation 10 minutes.

If Route B is taken, the journey time may be assumed to be normally distributed with mean μ minutes and standard deviation 12 minutes.

(a) For Route A, find the probability that the journey takes **more** than 60 minutes.

[2 marks]

(b) For Route B, the probability that the journey takes **less** than 60 minutes is 0.85. Find the value of μ .

[3 marks]

- (c) The van sets out at 06:00 and needs to arrive before 07:00.
 - (i) Which route should it take?
 - (ii) Justify your answer.

[3 marks]

- (d) On five consecutive days the van sets out at 06:00 and takes Route B. Find the probability that
 - (i) it arrives before 07:00 on all five days;
 - (ii) it arrives before 07:00 on at least three days.

[5 marks]

Do **NOT** write on this page.

10. [Maximum mark: 18]

Let $f(x) = 3\sin x + 4\cos x$, for $-2\pi \le x \le 2\pi$.

(a) Sketch the graph of f.

[3 marks]

- (b) Write down
 - (i) the amplitude;
 - (ii) the period;
 - (iii) the *x*-intercept that lies between $-\frac{\pi}{2}$ and 0.

[3 marks]

(c) Hence write f(x) in the form $p \sin(qx+r)$.

[3 marks]

(d) Write down one value of x such that f'(x) = 0.

[2 marks]

(e) Write down the two values of k for which the equation f(x) = k has exactly two solutions.

[2 marks]

(f) Let $g(x) = \ln(x+1)$, for $0 \le x \le \pi$. There is a value of x, between 0 and 1, for which the gradient of f is equal to the gradient of g. Find this value of x.

[5 marks]